
Using JLEB Draft #1 (26th April 2017)

 1 © Andrew Davison 2017

Using JLEB

Andrew Davison

Dept. of Computer Engineering

Prince of Songkla University

Hat Yai, Songkhla, 90110, Thailand

E-mail: ad@fivedots.coe.psu.ac.th

JLEB is a Java API for programming the Dream Cheeky LED Message Board, an

inexpensive desktop display which connects to your PC as a USB HID device. Figure

1 shows the board in the foreground, and Dream Cheeky's Windows software running

at the back.

Figure 1. The Dream Cheeky LED Message Board.

The picture is a little misleading since only the top-half of the display contains LEDs,

in a grid of 21 columns by 7 rows.

The board is sold online at http://dreamcheeky.com/led-message-board, but it's been

out-of-stock for some time. However, there are plenty of other places to buy it from –

Amazon sells it for around US $20.

The Windows software, and a brief technical specification, use to be available from

the Dream Cheeky site, but they've recently gone offline. An alternative source for

the manual is https://www.manualslib.com/manual/898427/Dream-Cheeky-Led-

Message-Board.html. I couldn't find the software, but it's no great loss for my needs

because it lacks an API. Instead, it's based around the creation of a list of messages,

which can be sent to the board in a variety of ways, including:

 at eight speeds and three brightness levels;

 using five scrolling modes: left, right, up, down, freeze, and flash;

 with optional sound effects (in ".wav" format);

 the inclusion of up to 12 bitmap images.

Using JLEB Draft #1 (26th April 2017)

 2 © Andrew Davison 2017

Figure 2 is a screenshot of the list software, setup to deliver a bitmap, two text

messages, and then another bitmap to the board.

Figure 2. The Dream Cheeky Software.

Programmers are better served by choosing one of the many third-party drivers, such

as:

 the Led Display Controller (https://sourceforge.net/projects/leddisplayctrl/), coded

in C++ for Windows and Linux;

 dcled (http://www.last-outpost.com/~malakai/dcled/), which runs on Linux;

 LED Message Board (https://www.macupdate.com/app/mac/43250/led-message-

board), which runs on OSX 10.7 or later;

 dream-cheeky-led (https://github.com/Aupajo/dream-cheeky-led), a driver coded

in Ruby;

 cheekymsgboard (https://code.google.com/archive/p/cheekymsgboard/), a C#

driver;

 the blog post, "Hacking the Dream Cheeky USB LED Message Board"

(https://charliex2.wordpress.com/2009/11/24/hacking-the-dream-cheeky-usb-led-

message-board/), by "Dr. Terrible" which explains how to use Jan Axelson's

SimpleHIDWrite utility (http://janaxelson.com/hidpage.htm#tools) to

communicate with the board.

Drivers coded in Java include:

 dcmsgboard4j (https://github.com/ullgren/dcmsgboard4j), which relies on

libusbjava to access the board;

 jLedStripe (https://github.com/loreii/jLedStripe), which employs the javax-usb

API.

Both these Java APIs utilize feature-rich USB libraries which aren't really needed for

a simple device like the Dream Cheeky board. Axelson's SimpleHIDWrite utility

shows that the board presents itself to the OS as a HID (Human Interface Device)

which can only be sent a single kind of command string.

Using JLEB Draft #1 (26th April 2017)

 3 © Andrew Davison 2017

The big advantage of HID-based hardware is that all the major OSes (i.e. Windows,

Linux, Mac) come with HID drivers. However, if the Dream Cheeky board is treated

as a USB device, then a USB driver is required for it.

As a consequence, JLEB (my Dream Cheeky LED message board API) relies on

javahidapi (https://github.com/torbjornvatn/javahidapi), a fork of the javahidapi

library by Codeminders (https://code.google.com/p/javahidapi/). The API employs a

JNI wrapper around a C/C++ HID API library, so no driver is nedded for the board.

1. The JLEB Design

JLEB lets the programmer think of the board as a low-resolution screen containing

animated sprites. Only the sprites (or parts of sprites) located between 'pixels' (0,0)

and (20,6) are rendered by the board. This region corresponds to the 21 columns and 7

rows of the board's LEDs, with the x-axis running to the right, and the y-axis down, as

in Figure 3.

Figure 3. JLEB Screen and Sprites.

A sprite contains a 2D character array made up of '*' and ' 's, and stores a name and a

position for the array's top-left corner on the screen. A '*' is drawn by turning on the

LED at that character's screen position, while ' ' means that the LED is off.

It's possible to create a 'multi-picture' sprite consisting of multiple character arrays

which allows the appearance of a sprite to be changed by switching between the

arrays.

A sprite can be animated in three main ways: it can be moved by modifying its

position, its 'picture' can be altered by switching to another array, and an array's

contents can be changed.

Common animation types are available as static methods in a Utils class. These

include sprite flashing, looping through the arrays in a sprite, drawing each in turn,

and moving a sprite across the screen to create a scrolling effect.

Using JLEB Draft #1 (26th April 2017)

 4 © Andrew Davison 2017

There's a separate ArrUtils class for character array manipulation methods. These

include functions for appending arrays, rotating an array's contents in steps of 90

degrees, and trimming blank columns from an array's left and right edges.

The JLEB examples in the next section use many of these Utils and ArrUtils methods.

JLEB employs a SpriteStore object for storing sprites. The store always includes a set

of character sprites representing a font (e.g. "A", "a", "?", and all the other printable

ASCII characters). Three different sized fonts are included with JLEB, and there are

tools for creating more. Character sprites can be combined into sprite strings, such as

the "Hi" sprite on the right of Figure 3. More sprites, such as the arrow on the left of

Figure 3, can be loaded into the store as necessary.

JLEB's Screen class utilizes a lower-level HIDScreen class to control the Dream

Cheeky board but, if the board isn't detected, falls back to a Swing version of the

board (the LedScreen class) instead. Figure 4 shows the LedScreen display.

Figure 4. The LedScreen Display.

The class diagram in Figure 5 illustrates how Screen utilizes HIDScreen or LedScreen

via a Board interface.

Figure 5. The Screen Class Diagrams.

Using JLEB Draft #1 (26th April 2017)

 5 © Andrew Davison 2017

The Board interface means that it should be possible to have JLEB use other types of

LED matrix displays, which will be tested out in future work.

The next section explains JLEB features through examples, and is followed by a

summary of the public methods in JLEB's Screen, Sprite, SpriteStore, Utils, and

ArrUtils classes.

2. JLEB Examples

The ten programs in this section fall into three groups: notification examples

(Hello.java, Alarm.java, Alarm2.java, and Message.java), time-related (Clock.java,

Date.java, BarsClock.java, and TimeLeft.java), and animations (Walker.java and

Cycle.java).

2.1. Hello.java

In this example, the message "Hello World!" scrolls across the board from right to

left while a fanfare sound clip plays. Figure 6 shows the program running on a Dream

Cheeky board over the course of a few seconds.

Figure 6. Hello.java Executing.

The code is:

public class Hello

{

 public static void main(String[] args)

 {

 Screen scr = new Screen();

 SpriteStore ss = new SpriteStore(SpriteStore.BIG);

 // SMALL, MEDIUM, BIG, or no argument

 // ss.printNames();

 Sprite hw = ss.buildMsg("Hello World!");

 // hw.print();

 Utils.play("fanfare", 3); // play 3 times

 Utils.scrollLeft(scr, hw);

 scr.close();

 } // end of main()

Using JLEB Draft #1 (26th April 2017)

 6 © Andrew Davison 2017

} // end of Hello class

The first two lines initialize the Screen and SpriteStore objects, and specifies that the

'BIG' font will be used. SpriteStore.buildMsg() uses this font to construct a sprite

string, which is scrolled right to left across the screen by Utils.scrollLeft(). At the

same time, the "fanfare" sound clip is played three times.

When the sprite has disappeared off the left edge of the screen, Utils.scrollLeft()

returns and the screen is closed and the program ends.

The commented-out lines include calls to SpriteStore.printNames() and Sprite.print()

which print details about the store and sprite, and are useful during debugging.

If SpriteStore is initialized with the 'SMALL' font:

 SpriteStore ss = new SpriteStore(SpriteStore.SMALL);

then the sprite string appears as in Figure 7.

Figure 7. "Hello World!" in the Small Font.

Implementing Scrolling

The scrolling effect is achieved by updating the position of the sprite string inside a

loop, waiting a short time between each change so the user can see the movement.

The sprite starts just off the right edge of the screen, and stops moving when it has

disappeared off the left edge. These starting and ending positions are illustrated using

the "Hi" sprite string in Figure 8.

Figure 8. The Starting and Ending Positions for Scrolling Left.

Using JLEB Draft #1 (26th April 2017)

 7 © Andrew Davison 2017

These positions can be calculated from the widths of the screen and the sprite, which

is done at the start of Utils.scrollLeft():

// in the Utils class

public static void scrollLeft(Screen scr, Sprite s)

{

 int x0 = scr.getWidth();

 int x1 = -s.getWidth();

 moveBetween(scr, s, x0, 0, x1, 0); // move from (x0,0) to (x1,0)

} // end of scrollLeft()

Utils.moveBetween() is passed references to the screen, sprite, and the (x, y)

coordinates of the start and end points. It uses calcLine() to generate a list of points in

a line between the two points, which are used to incrementally update the position of

the sprite inside a loop:

// in the Utils class

public static void moveBetween(Screen scr, Sprite s,

 int x0, int y0, int x1, int y1)

{

 ArrayList<Point> path = calcLine(x0, y0, x1, y1);

 if (path.size() == 0)

 System.out.println("No path generated");

 else {

 // move along path

 for (int i=0; i < path.size(); i++) {

 scr.clear(s); // wipe the sprite from the screen

 s.setPos(path.get(i));

 scr.add(s);

 scr.draw();

 delay(200);

 }

 }

} // end of moveBetween()

moveBetween() implements an update-draw-delay loop: the sprite's position is

updated by calling Sprite.setPos(), draw() is called, and delay() pauses execution for a

number of milliseconds.

The screen is updated in two steps: first the sprite is 'cleared' from the screen with

Screen.clear(), then 'added' back to the screen at its new position with Screen.add().

However, these changes only become visible to the user when the screen is redrawn

by Screen.draw(). This separation allows the screen to be updated in multiple ways

before it is redrawn.

Utils.calcLine() uses the Bresenham line algorithm to generate points in a line

between the two supplied points.

It is quite easy to implement other types of scrolling by calling Utils.moveBetween()

with different start and end points. For example, Utils.scrollUp() moves a sprite

upwards, starting below the bottom edge of the screen and finishing above the top

edge. The sprite is positioned so it is in the center of the horizontal axis, as in Figure

9.

Using JLEB Draft #1 (26th April 2017)

 8 © Andrew Davison 2017

Figure 9. The Starting and Ending Positions for Scrolling Up.

The code for Utils.scrollUp():

// in the Utils class

public static void scrollUp(Screen scr, Sprite s)

{

 int xMid = (int) Math.round((scr.getWidth() - s.getWidth())/2);

 int y0 = scr.getHeight();

 int y1 = -s.getHeight();

 moveBetween(scr, s, xMid, y0, xMid, y1);

 // move from (xMid, y0) to (xMid,y1)

} // end of scrollUp()

Sound Clips

JLEB includes the ability to play WAV sound clips, with the option of waiting for the

clip to finish. Utils.play() was called in Hello.java:

 Utils.play("fanfare", 3);

This causes the fanfare.wav clip to play three times, but the function returns

immediately without waiting for the playing to finish.

The PlaySound.java example employs two other sound methods:

// in PlaySound.java

public static void main(String[] args)

{

 ArrayList<String> fnms = Utils.getSounds();

 int i = 0;

 for(String fnm : fnms) {

 System.out.print(fnm + " ");

 if ((++i)%5 == 0)

 System.out.println();

 }

 System.out.println();

 int index = (int)(Math.random()*fnms.size());

Using JLEB Draft #1 (26th April 2017)

 9 © Andrew Davison 2017

 System.out.println("Playing: " + fnms.get(index));

 Utils.playWait(fnms.get(index));

} // end of main()

Utils.getSounds() returns a list of all the WAV files currently included with JLEB,

and Utils.playWait() is the waiting version of play(). The ".wav" extension can be left

off the name passed to play() and playWait(), and if there's no integer argument then

the clip is played just once.

2.2. Alarm.java

This example shows how additional sprites can be loaded into the sprite store, and

used in an animation. It also illustrates another way of animating a sprite string, as a

series of changing pictures (character arrays).

Figure 10 shows Alarm.java executing.

Figure 10. Alarm.java Execution.

The "Help" message reveals itself column by column, from left-to-right, and then an

animated sprite appears on the left, which rapidly switches between an "X" and a "+"

shape.

The code for Alarm.java:

// in Alarm.java

public static void main(String[] args)

{

 Screen scr = new Screen();

 SpriteStore ss = new SpriteStore(SpriteStore.SMALL);

 ss.loadSprites("sprites1.txt");

 ss.printNames();

 // convert "Help" into a sprite made up of a sequence of arrays

 Sprite helpSeq = Utils.buildRight(ss.buildMsg("Help"));

 helpSeq.setX(6); // locate sprite at (6,0)

 Utils.showSeq(scr, helpSeq);

 Utils.play("bell.wav");

 // show '+' and 'x' sprites a few times

 Sprite[] sprites = new Sprite[2];

 sprites[0] = ss.getSprite("plus");

 sprites[1] = ss.getSprite("times");

Using JLEB Draft #1 (26th April 2017)

 10 © Andrew Davison 2017

 Utils.showAll(scr, sprites, 10);

 Utils.waitEnter(); // wait for user to type <ENTER>

 scr.close();

} // end of main()

At the start of Alarm.java, the sprites in sprites1.txt are loaded into the store.

sprites1.txt defines each sprite in terms of its name, the size of its character array, and

the contents of that array. For example, the "house" and "envelope" sprites are:

house 7 7

 * *

 * **

 * *

* *

* ** *

* ** *

* ** *

envelope 5 4

* *

* * *

SpriteStore.printNames() is called in Alarm.java, and reports:

Font:

! " # $ % &

' () * + ,

- . / 0 1 2

3 4 5 6 7 8

9 : ; < = >

? @ A B C D

E F G H I J

K L M N O P

Q R S T U V

W X Y Z [\

] ^ _ ` a b

c d e f g h

i j k l m n

o p q r s sp

t u v w x y

z { | } ~

Sprites:

alarm1 alarm2 alarm3 basket bolt cross

cup downArrow downThumb envelope happy hourGlass

house leftArrow liveSpeaker plus pointFinger rightArrow

sad speaker speech star tick times

twitter upArrow upThumb wifi

The character sprite names are listed first, followed by the names of the sprites loaded

from sprites1.txt. (Note, that the ' ' character sprite is called "sp".)

The animation of the "help" string is implemented in three lines:

Using JLEB Draft #1 (26th April 2017)

 11 © Andrew Davison 2017

// part of Alarm.java

Sprite helpSeq = Utils.buildRight(ss.buildMsg("Help"));

helpSeq.setX(6); // locate sprite at (6,0)

Utils.showSeq(scr, helpSeq);

SpriteStore.buildMsg() creates the sprite string, which is passed to Utils.buildRight().

This creates a new sprite, helpSeq, which contains multiple pictures (character arrays)

created from the "Help" character array. Most of the work is performed by

ArrUtils.buildRight():

// in the Utils class

public static Sprite buildRight(Sprite s)

{ ArrayList<char[][]> pics = ArrUtils.buildRight(s.getCharArray());

 return new Sprite(pics);

}

ArrUtils.buildRight() creates a list of new character arrays by iterating over the

supplied array copying increasing numbers of columns into each array:

// in the ArrUtils class

public static ArrayList<char [][]> buildRight(char[][] charArr)

{

 if (charArr == null) {

 System.out.println("Array is null");

 return null;

 }

 int width = charArr[0].length;

 int height = charArr.length;

 ArrayList<char [][]> pics = new ArrayList<>();

 for (int colEnd = 0; colEnd < width; colEnd++) {

 char[][] out = new char[height][width];

 clear(out); // copying columns into out[][]

 for (int r = 0; r < height; r++) {

 for (int c = 0; c <= colEnd; c++)

 out[r][c] = charArr[r][c];

 }

 pics.add(out); // add out[][] to list

 }

 return pics;

} // end of buildRight()

Back in Alarm.java, the multi-picture sprite is positioned at (6,0) on the screen, and

then the sprite's pictures are each displayed in turn by Utils.showSeq():

// in the Utils class

public static void showSeq(Screen scr, Sprite s)

{ loop(scr, s, 1); }

public static void loop(Screen scr, Sprite s, int numTimes)

// cycle through all the sprite's pics a number of times

{

Using JLEB Draft #1 (26th April 2017)

 12 © Andrew Davison 2017

 int numPics = s.numPics();

 for(int i=0; i < (numTimes * numPics); i++) {

 scr.clear(s);

 s.toPic(i%numPics);

 scr.add(s);

 scr.draw();

 delay(200);

 }

} // end of loop()

showSeq() is a wrapper around Utils.loop() which utilizes the same kind of update-

draw-delay loop as seen earlier in Utils.moveBetween(). The update clears the sprite

from the screen, changes its picture by calling Sprite.toPic(), and then calls add() to

add that new picture to the screen. Sprite.toPic() uses an index value to refer to a

particular picture, and employs the modulo of the number of pictures to cycle through

them.

Alarm.java shows another way of cycling through pictures, by building an array of

sprites, and calling Util.showAll():

// part of Alarm,java

Sprite[] sprites = new Sprite[2];

sprites[0] = ss.getSprite("plus");

sprites[1] = ss.getSprite("times");

Utils.showAll(scr, sprites, 10);

The "plus" and "times" sprites are loaded from the store into an array, which is passed

to Utils.showAll():

// in the Utils class

public static void showAll(Screen scr,

 Sprite[] sprites, int numTimes)

{ for (int i=0; i < numTimes; i++) {

 for (int j=0; j < sprites.length; j++) {

 scr.add(sprites[j]);

 scr.draw();

 Utils.delay(200);

 scr.clear(sprites[j]);

 }

 }

} // end of showAll()

This function employs a slight variation of the update-draw-delay loop, where the

clearing of the old sprite is moved to after the delay.

2.3. Alarm2.java

Alarm2 demonstrates another animation using an array of sprites, shows how a multi-

picture sprite can be loaded and used, illustrates one of the screen drawing functions,

and sprite flashing. Figure 11 has several shots of the Alarm example.

Using JLEB Draft #1 (26th April 2017)

 13 © Andrew Davison 2017

Figure 11. The Alarm2.java Execution.

The code for Alarm2.java:

public static void main(String[] args)

{

 Screen scr = new Screen();

 SpriteStore ss = new SpriteStore(); // load BIG font by default

 ss.loadSprites("sprites1.txt");

 ss.loadMultiSprite("arrows.txt");

 ss.printNames();

 Sprite[] alarms = new Sprite[3];

 alarms[0] = ss.getSprite("alarm1");

 alarms[1] = ss.getSprite("alarm2");

 alarms[2] = ss.getSprite("alarm3");

 Utils.play("romans", 3);

 // iterate through the alarm sprites a few times

 Utils.showAll(scr, alarms, 9);

 // loop through the arrows multi-pic sprite

 Sprite arrows = ss.getSprite("arrows");

 arrows.setPos(9, 1); // place at (9,1)

 Utils.loop(scr, arrows, 5);

 // draw a rectangle around the cleared display

 scr.clear();

 scr.addRect(0,0, scr.getWidth()-1, scr.getHeight()-1);

 scr.draw();

 Utils.delay(1000);

 // flash an 'N' in the center

 Sprite n = ss.getSprite('N');

 // n.print();

 n.setPos(Sprite.CENTER, scr.getWidth()/2, scr.getHeight()/2);

 Utils.flash(scr, n, 5);

 // leave just the 'N' in place

 scr.clear();

 scr.add(n);

 scr.draw();

 Utils.waitEnter();

 scr.close();

} // end of main()

Using JLEB Draft #1 (26th April 2017)

 14 © Andrew Davison 2017

SpriteStore.loadMultiSprite() loads a multi-picture sprite. In this case, "arrows.txt"

contains four images (character arrays) representing an arrow pointing in different

directions:

arrows 5 5

down

 *

 *

 *

 *

left

 *

 *

up

 *

 *

 *

 *

right

 *

 *

The sprite's name is "arrow" and each array also has a name. All the pictures must be

the same size: 5 x 5 in this case.

The left-most sprite in Figure 11 is animated using the same approach as in

Alarm.java. Three different alarm sprites are loaded into an array, and cycled through

nine times while a music clip is played three times:

// part of Alarm2.java

Sprite[] alarms = new Sprite[3];

alarms[0] = ss.getSprite("alarm1");

alarms[1] = ss.getSprite("alarm2");

alarms[2] = ss.getSprite("alarm3");

Utils.play("romans", 3);

// iterate through the alarm sprites a few times

Utils.showAll(scr, alarms, 9);

The multi-picture sprite, arrows, requires less work to animate, since the sprite

contains all the pictures, and so there's no need for a Sprite array. The sprite is

'rotated' by being passed to Utils.loop() which was described above:

// part of Alarm2.java

Sprite arrows = ss.getSprite("arrows");

Using JLEB Draft #1 (26th April 2017)

 15 © Andrew Davison 2017

arrows.setPos(9, 1); // place at (9,1)

Utils.loop(scr, arrows, 5);

The Screen class includes functions for drawing lines, rectangles, points, and circles.

A border is added to the screen as a large rectangle:

// part of Alarm2.java

scr.clear();

scr.addRect(0,0, scr.getWidth()-1, scr.getHeight()-1);

scr.draw();

The example ends by adding a large "N" to the center of the screen, which flashes on

and off five times:

// part of Alarm2.java

Sprite n = ss.getSprite('N');

n.setPos(Sprite.CENTER, scr.getWidth()/2, scr.getHeight()/2);

Utils.flash(scr, n, 5);

Usually a sprite is positioned in terms of its top-left corner, but it's also possible to use

a 'compass' constant to specify a different position. The various constants are shown

in Figure 12.

Figure 12. The Compass Positions for a Sprite.

In the code above, the center of the "N" sprite is assigned to the center of the screen.

Utils.flash() uses another variation of update-draw-delay, where the sprite is drawn

for 500 ms, then deleted for 200 ms, before repeating:

// in the Utils class

public static void flash(Screen scr, Sprite s, int numTimes)

{

 for (int i =0; i < numTimes; i++) {

 scr.add(s);

 scr.draw();

 delay(500);

 scr.clear(s); // only this sprite is wiped from the screen

 scr.draw();

 delay(200);

 }

} // end of flash()

Using JLEB Draft #1 (26th April 2017)

 16 © Andrew Davison 2017

2.4. Message.java

Message.java shows a flashing envelope sprite in the center of the screen with two

arrows that move towards it from the left and right edges. This example illustrates yet

another way of animating, by applying an inverse transformation to the character

array inside the sprite. Figure 13 shows a few shots of the program executing.

Figure 13. Message.java Executing.

The code for Message.java:

public static void main(String[] args)

{

 Screen scr = new Screen();

 SpriteStore ss = new SpriteStore(SpriteStore.SMALL);

 ss.loadSprites("sprites1.txt");

 ss.printNames();

 // left arrow off left edge

 Sprite rightArrow = ss.getSprite("rightArrow"); // -->

 rightArrow.setPos(Sprite.NE, -1, 0);

 // envelope in center

 Sprite envelope = ss.getSprite("envelope");

 envelope.setPos(Sprite.NORTH, scr.getWidth()/2, 0);

 // right arrow off right edge

 Sprite leftArrow = ss.getSprite("leftArrow"); // <--

 leftArrow.setPos(Sprite.NW, scr.getWidth()+1, 0);

 scr.add(envelope);

 scr.draw();

 Utils.play("notify");

 // move arrows in towards the envelope

 for (int i=0; i < 8; i++) {

Using JLEB Draft #1 (26th April 2017)

 17 © Andrew Davison 2017

 scr.clear();

 rightArrow.xStep(1);

 leftArrow.xStep(-1);

 scr.add(leftArrow);

 scr.add(rightArrow);

 scr.add(envelope);

 scr.draw();

 Utils.delay(200);

 }

 ArrUtils.printTransforms();

 // 'flash' the envelope by inverting its picture

 Utils.flashInvert(scr, envelope, 5);

 Utils.waitEnter();

 scr.close();

} // end of main()

The code begins by placing the "rightArrow", "envelope", and "leftArrow" sprites in

their starting positions. Inside the loop, the arrows are moved by calling

Sprite.xStep().

ArrUtils.printTransforms() lists the character array transformation functions in

ArrUtils. Currently, the output is:

Transformation names:

 copy flipHoriz flipVert invert

 rotLeft rotRight trim

Utils.flashInvert() utilizes the "invert" transformation:

// in the Utils class

public static void flashInvert(Screen scr, Sprite s, int num)

{

 int numTimes = num*2;

 // s.backup();

 for(int i=0; i < numTimes; i++) {

 scr.clear(s);

 s.transform("invert");

 scr.add(s);

 scr.draw();

 Utils.delay(200);

 }

 // s.restore();

} // end of flashInvert()

A transformation changes the contents of the sprite's character array, and so it's

sometimes useful to call Sprite.backup() beforehand so that Sprite.restore() can be

used to restore the original array at the end. That isn’t needed here since inversion is

called an even number of times which leaves the array as it started.

Using JLEB Draft #1 (26th April 2017)

 18 © Andrew Davison 2017

2.5. Clock.java

Clock.java displays the current time, as shown in Figure 14, which changes every

minute.

Figure 14. Clock.java Executing.

This example differs from earlier ones in that it must run continuously, ideally

without causing the calling program to wait forever. Implementing the clock as an

infinite update-draw-delay loop isn't sufficient; the loop must also be embedded in a

thread. This coding pattern is useful for any long-lived display application.

The Clock class extends Thread so that the update-draw-delay loop can be executed

inside the thread's run() method. The loop will continue so long as an isRunning

boolean is true. The code for the class:

public class Clock extends Thread

{

 private static final int REFRESH_DELAY = 1000 * 20;

 // 20 secs in ms

 private volatile boolean isRunning = false;

 // used to stop the thread

 private Screen scr;

 private SpriteStore ss;

 public Clock(Screen scr, SpriteStore ss)

 { this.scr = scr;

 this.ss = ss;

 this.start();

 } // end of Clock

 public void run()

 {

 isRunning = true;

 while(isRunning) {

 scr.clear();

 scr.add(ss.buildMsg(getTime()));

 scr.draw();

 Utils.delay(REFRESH_DELAY);

 }

 } // end of run()

 public void end() // end the update-draw-delay loop

Using JLEB Draft #1 (26th April 2017)

 19 © Andrew Davison 2017

 { isRunning = false; }

 private String getTime()

 // return time as a formatted string: <hours> : <mins>

 {

 Calendar cal = new GregorianCalendar();

 int hours = cal.get(Calendar.HOUR); // 0..11

 int mins = cal.get(Calendar.MINUTE); // 0..59

 return String.format("%d:%02d", hours, mins);

 } // end of getTime()

} // end of Clock class

A test-rig for executing the Clock class:

public static void main(String[] args)

{

 Screen scr = new Screen();

 SpriteStore ss = new SpriteStore(SpriteStore.MEDIUM);

 // font must be small or medium so that all the

 // time text will be visible at once

 Clock c = new Clock(scr, ss);

 Utils.waitEnter(); // wait a while before killing the clock...

 c.end();

 scr.close();

} // end of main()

The Screen and SpriteStore objects are passed to the Clock class' constructor which

starts the thread running.

The run() method in this kind of application will always have the general form:

public void run()

{

 isRunning = true;

 while(isRunning) {

 // update the screen

 scr.draw();

 Utils.delay(REFRESH_DELAY);

 }

} // end of run()

Clock updating clears the screen. then adds the current time as a sprite string:

// update part of Clock.run()

scr.clear();

scr.add(ss.buildMsg(getTime()));

getTime() is a standard bit of Java which returns the current hour and minutes as a

string.

Note that isRunning is declared as volatile since its value can be changed by a call to

Clock.isEnd() which is executed outside the running thread.

Using JLEB Draft #1 (26th April 2017)

 20 © Andrew Davison 2017

Utils.delay() uses Java's sleep() function which isn't all that accurate. To avoid any

errors, delay() sleeps for 20 seconds at a time rather than in 1 minute steps. Also when

isRunning is set to false, execution may be paused inside delay() which will mean that

the thread won't terminate for at most REFRESH_DELAY milliseconds. It's often

better to make the delay period smaller to reduce this wait time.

2.6. BarsClock.java

This example was inspired by the unusual Matrix M6001 wrist watch, which displays

the time as a series of bars rather than using hours and minutes hands (e.g. see

https://www.engadget.com/2008/01/18/matrix-m6001-watch-uses-bars-not-hands/).

The Dream Cheeky version of it is shown in Figure 15.

Figure 15. BarsClock.java Executing.

Figure 15 shows the same time as Figure 14 (4.44pm). The three lines represent the

number of hours (4), the number of 5-minute intervals (8), and the last line is for any

extra minutes after the last 5-minute interval (4). The dot below the 5-minutes line

marks 30 minutes (i.e. six 5-minute intervals), and the hours line will also have added

dots after 5 and 10 hours have passed.

BarsClock is almost identical to the earlier Clock class: it subclasses Thread, and

executes an update-draw-delay loop inside run(). It differs in the details of how the

screen is updated:

// run() inside BarsClock.java

public void run()

{

 isRunning = true;

 while(isRunning) {

 scr.clear();

 addTime(scr);

 scr.draw();

 Utils.delay(REFRESH_DELAY);

 }

} // end of run()

Using JLEB Draft #1 (26th April 2017)

 21 © Andrew Davison 2017

addTime() get the current time in hours and minutes, and converts the minutes value

into two integers representing the number of 5-minute intervals, and the remaining

number of minutes.

Three lines are added to the screen using the three integers to calculate their lengths;

dots may be included to make it easier to visually judge the length of long lines.

private void addTime(Screen scr)

{

 Calendar cal = new GregorianCalendar();

 int hours = cal.get(Calendar.HOUR); // 0..11

 int mins = cal.get(Calendar.MINUTE); // 0..59

 int num5s = mins/5;

 int units = mins - (5*num5s);

 // draw hours line

 scr.addLine(0,0, hours-1, 0);

 if (hours > 4)

 scr.set(4,1, true); // to mark 5 hours

 if (hours > 9)

 scr.set(9,1, true); // to mark 10 hours

 // draw 5 mins line

 if (num5s > 0)

 scr.addLine(0,3, num5s-1, 3);

 if (num5s > 6) // to mark 6 lots of 5 mins i.e. 30 mins

 scr.set(5,4, true);

 if (units > 0) // draw units line

 scr.addLine(0,6, units-1, 6);

} // end of addTime()

The arguments passed to Screem.addLine() are the starting and ending (x, y)

coordinates of the line. Screen.set() is passed the coordinate of a point, and true or

false to indicate whether the point should be drawn (i.e. LED lit) or not drawn (LED

off).

2.7. TimeLeft.java

TimeLeft.java displays the number of seconds left between now and a time entered on

the command line when the program is called. When the time left reaches 0, the

message "Time!!" is displayed, and a sound played. Figure 15 shows the display

counting down.

Figure 15. TimeLeft.java Executing.

Using JLEB Draft #1 (26th April 2017)

 22 © Andrew Davison 2017

The main() function passes the deadline time string to the TimeLeft constructor,

which utilizes Java 8's much improved time classes to record the deadline and

calculate the time remaining:

// globals

private Screen scr;

private SpriteStore ss;

private LocalTime deadline;

public TimeLeft(Screen scr, SpriteStore ss, String deadlineStr)

{

 this.scr = scr;

 this.ss = ss;

 try {

 deadline = LocalTime.parse(deadlineStr);

 this.start();

 }

 catch(DateTimeParseException e)

 { System.out.println("Incorrect time form; use 24-hour HH:MM"); }

} // end of TimeLeft()

run() can terminate in two ways: either the isRunning boolean can be set to false, as in

earlier examples, or the deadline can be reached:

// globals

private static final int REFRESH_DELAY = 1000; // 1 sec in ms

private volatile boolean isRunning = false;

public void run()

{

 isRunning = true;

 while(isRunning) {

 long secs = secsLeft();

 if (secs <= 0) // deadline reached; might be negative

 break;

 scr.clear();

 scr.add(ss.buildMsg("" + secs));

 scr.draw();

 Utils.delay(REFRESH_DELAY);

 }

 // time has run out

 Utils.play("buzz", 4);

 scr.clear();

 scr.add(ss.buildMsg("Time!!"));

 scr.draw();

} // end of run()

The secsLeft() function calculates the time in seconds between now and the deadline:

private long secsLeft()

Using JLEB Draft #1 (26th April 2017)

 23 © Andrew Davison 2017

// return seconds left until the deadline

{

 LocalTime now = LocalTime.now();

 return now.until(deadline, ChronoUnit.SECONDS);

}

Back in run(), the time left is converted to a sprite string and added to the screen:

scr.add(ss.buildMsg("" + secs));

When the update-draw-delay loop ends, the run() method draws "Time!!" to the

screen and emits a buzzing sound.

2.8. Date.java

Date.java displays the date once, then exits, and so there's no need to use a thread.

The program uses a standard bit of Java to obtain the date as a string, and calls

Utils.scrollLeft() to display it as in Figure 16.

Figure 16. Date.java Executing

Utils.scrollLeft() is utilized because the date's length is wider than the board. The

code:

// in Date.java

public static void main(String[] args)

{

 Screen scr = new Screen();

 SpriteStore ss = new SpriteStore(SpriteStore.MEDIUM);

 Sprite today = ss.buildMsg(getDate());

 // today.print(); // for debugging

 Utils.play("gong");

 Utils.scrollLeft(scr, today);

 scr.close();

} // end of main()

private static String getDate()

// return today's date as a formatted string

{

 Calendar cal = Calendar.getInstance();

 Format formatter = new SimpleDateFormat("EEE, d MMM yyyy");

 return formatter.format(cal.getTime());

} // end of getDate()

Using JLEB Draft #1 (26th April 2017)

 24 © Andrew Davison 2017

When the call to today.print() is uncommented, the following is printed:

Pos: (0, 0)

Pic nm: "Wed, 19 Apr 2017"

Size (w x h): 66 x 7

--

|* * * * ** ** ** * * ****|

|* * * ** * * * * * * * * ** *|

|* * ** *** * * * * * *** *** * * * * * |

|**** * ** * * * *** **** * * * * * * * * * |

|**** ** * * ** * * * * * * * * * * * * |

|* * ** *** * *** ** * * *** * **** * *** * |

| * * |

--

2.9. Walker.java

Walker.java is another multi-picture sprite example, this time of a 'stick man' who

walks left to right across the screen, passing in front of a house. Figure 17 shows the

program executing.

Figure 17. Walker.java Executing.

The Walker.java code:

public static void main(String[] args)

{

 Screen scr = new Screen();

 SpriteStore ss = new SpriteStore();

 ss.loadSprites("sprites1.txt");

 ss.loadMultiSprite("stickWalk.txt"); // stick-man multi-pic

 // ss.printNames();

 Sprite house = ss.getSprite("house");

 house.setX(6); // located at (6,0)

 Sprite walker = ss.getSprite("walker");

 int startPos = -walker.getWidth();

 walker.setX(startPos); // start off left side of screen

 int no = 0; // the picture num.

 while(true) { // man never finishes walking

 scr.clear();

 scr.add(house);

Using JLEB Draft #1 (26th April 2017)

 25 © Andrew Davison 2017

 walker.xStep(1); // move right

 walker.toPic(no); // switch to picture num.

 boolean isVis = scr.add(walker);

 no = (no+1) % walker.numPics(); // next picture num.

 scr.draw();

 if (!isVis) { // has walker left the board?

 Utils.play("teleport.wav");

 walker.setX(startPos); // reset to starting position

 }

 Utils.delay(200);

 }

} // end of main()

SpriteStore.loadMultiSprite() loads the definition of the multi-picture stick man.

"stickWalk.txt" contains eight character arrays for different walking positions, starting

with:

walker 5 7

w0

 *

* * *

 *

 * *

 * *

* *

w1

 *

 *

 * *

** *

 *

As with the earlier "arrows.txt" multi-picture file, each array has a name, and are the

same size (in this case, 5 columns by 7 rows).

Walker.java animates the stick man in two ways – its cycles through the multiple

pictures so that the man's limbs appear to move, and also translates the sprite across

the screen.

When the man has left the right side of the screen, a sound clip is played, and the

sprite is reset to just off the left edge of the screen to repeat its journey past the house.

The reset is triggered by examining the result of Screen.add() which returns false if

the sprite isn't added to a visible part of the screen.

The update-draw-delay loop never terminates, so the user must type ctrl-c at the

command line to stop the program.

Using JLEB Draft #1 (26th April 2017)

 26 © Andrew Davison 2017

2.10. Cycle.java

Cycle.java is a shorter example of multi-picture sprites. A multi-picture sprite name is

supplied on the command line, and its corresponding text file is loaded. The sprite is

animated by cycling through all of its pictures five times. Figure 18 shows screenshots

of the execution of the "pattern" sprite.

Figure 18. Cycle.java Animating "pattern".

The Cycles.java code:

public static void main(String[] args)

{

 if (args.length != 1) {

 System.out.println("Usage: run Cycle <multi-pic sprite-name>");

 return;

 }

 Screen scr = new Screen();

 SpriteStore ss = new SpriteStore();

 ss.loadMultiSprite(args[0]+".txt"); // load sprite's text file

 Sprite s = ss.getSprite(args[0]);

 Utils.loop(scr, s, 5);

 Utils.waitEnter();

 scr.close();

} // end of main()

3. JLEB Classes

This section describes the public methods and constants for the JLEB classes: Screen,

Sprite, SpriteStore, Utils, and ArrUtils. Examples of how these methods are used were

presented in the previous section.

3.1. The Screen Class

The public methods are divided into six groups, listed in the following tables:

 Table 1. Basic Screen Methods.

 Table 2. Screen Information.

 Table 3. Screen Testing.

 Table 4. Screen Clearing.

 Table 5. Adding Sprites/Arrays/Points to the Screen.

Using JLEB Draft #1 (26th April 2017)

 27 © Andrew Davison 2017

 Table 6. Adding Shapes to the Screen.

Method Purpose

Screen(); Constructor; create a Screen object which may refer to a

Swing window or to the Dream Cheeky LED message board.

void draw(); Draw the contents of the screen to the Swing window or the

message board.

void close(); Close the connection to the Swing window or message board.

Table 1. Basic Screen Methods.

Method Purpose

int getWidth(); Return the width of the Swing window or message board.

int getHeight(); Return the height of the Swing window or message board.

void print(); Print the contents of Swing window or message board. A lit

LED is represented by '*", an unlit LED by ' '. A border is

placed around the screen using '-' and '|'.

Table 2. Screen Information.

Method Purpose

Rectangle

intersection(Sprite s);

Return the intersection rectangle of the sprite with the

screen's drawing area. (May be null.)

boolean

intersects(Sprite s);

Does the sprite intersect the drawing area of the screen? In

other words, is the sprite visible on the board?

boolean

onScreen(Point p);

Is the coordinate p inside the drawing area of the screen? In

other words, is the point visible on the board?

boolean onScreen(int

x, int y);

Is the coordinate (x, y) inside the drawing area of the screen?

Table 3. Screen Testing.

Method Purpose

void clear(); Clear the screen.

void clear(int x, int y,

int w, int h);

Clear the screen rectangle defined by the top-left coordinate

(x, y) and width w and height h.

void clear(Rectangle r); Clear the screen rectangle defined by r.

Using JLEB Draft #1 (26th April 2017)

 28 © Andrew Davison 2017

void clear(Sprite s);
Clear the screen rectangle define by the current position of

the sprite, and its width and height.

Table 4. Screen Clearing.

Method Purpose

boolean add(Sprite s); Add a sprite to the screen. Return true if some or all of the

sprite is in the drawing area of the screen, false otherwise.

This method does not draw the screen; for that use

Screen.draw().

boolean add(int x, int y,

char[][] chArr);

Add the character array to the screen with its top-left corner

located at (x, y). Return true if some or all of the array is in

the drawing area of the screen, false otherwise. This

method does not draw the screen; for that use

Screen.draw().

void set(int x, int y,

boolean isOn);

Depending on the boolean argument either turn on or off

the LED located at (x, y). This method does not draw the

screen; for that use Screen.draw().

boolean isSet(int x, int

y);

Is the LED at (x, y) turned on?

Table 5. Adding Sprites/Arrays/Points to the Screen.

Method Purpose

void addLine(int x0, int y0, int x1, int

y1);

Add a line to the screen defined by the end-

points (x0, y0) and (x1, y1). This method

does not draw the screen; for that use

Screen.draw().

void addRect(int x, int y, int w, int h); Add an unfilled rectangle to the screen

defined by the top-left corner (x, y), width w,

and height h. This method does not draw the

screen; for that use Screen.draw().

void addCircle(int x, int y, int radius); Add an unfilled circle to the screen centered

at (x, y), with the specified radius. This

method does not draw the screen; for that use

Screen.draw().

Table 6. Adding Shapes to the Screen.

Using JLEB Draft #1 (26th April 2017)

 29 © Andrew Davison 2017

3.2. The Sprite Class

The Sprite class has nine public constants: NORTH, NE, EAST, SE, SOUTH, SW,

WEST, NW, and CENTER, which refer to different compass points on the sprite's

picture (see Figure 12).

The public methods are divided into three groups, listed in the following tables:

 Table 7. Sprite Creation.

 Table 8. Position Methods.

 Table 9. Picture Methods.

Method Purpose

Sprite(char[][] charArr); Constructor; create a sprite using the

character array. It will have the default name

"noname$$", and its top-left corner will be at

(0, 0).

Sprite(String name, char[][] charArr); Constructor; create a sprite called name using

the character array. Its top-left corner will be

at (0, 0).

Sprite(ArrayList<char[][]> charArrs); Constructor; create a sprite using the

character array list. The arrays will be called

"noname$$" followed by a number starting at

0. The sprite will use the first array as its

default picture, and its top-left corner will be

at (0, 0).

Sprite(ArrayList<String> names,

ArrayList<char[][]> charArrs);

Constructor; create a sprite using the named

character arrays in the list. The sprite will use

the first array as its default picture, and its

top-left corner will be at (0, 0).

void print(); Print details about the sprite including its

current position, picture name, and character

array.

Table 7. Sprite Creation.

Method Purpose

int getX(); Get the x-axis position of the top-left corner of the sprite.

int getY(); Get the y-axis position of the top-left corner of the sprite.

Point getPos(); Get the (x, y) coordinate of the top-left corner of the sprite.

Rectangle getRect(); Get the sprite's rectangle, defined by its top-left corner, and

its width and height.

void setX(int x); Set the x-axis position of the top-left corner of the sprite.

Using JLEB Draft #1 (26th April 2017)

 30 © Andrew Davison 2017

void setY(int y); Set the y-axis position of the top-left corner of the sprite.

void setPos(int x, int

y);

Set the coordinate of the top-left corner of the sprite to (x, y)

void setPos(Point p); Set the coordinate of the top-left corner of the sprite to p.

void setPos(int

compass, int x, int y);

Set the coordinate of the compass point of the sprite to (x, y).

For a list of the compass point constants see Figure 12.

void xStep(int xStep); Move the sprite by adding xStep to its x-axis position.

void yStep(int yStep); Move the sprite by adding yStep to its y-axis position.

Table 8. Position Methods.

Method Purpose

void addPic(String name,

char[][] charArr);

Add the specified named picture (character array) to

the sprite.

int getCurrPicNo(); Return the index of the current picture being used by

the sprite.

int numPics(); Return the number of pictures in the sprite.

String getNames(); Return a single string containing all the names of the

pictures in the sprite, separated by spaces.

String getName(); Return the name of the current picture being used by

the sprite.

String getName(int i); Return the name of the picture with index number i.

int getWidth(); Return the width of the current picture being used by

the sprite.

int getHeight(); Return the height of the current picture being used by

the sprite.

char[][] getCharArray(); Return a copy of the current picture being used by the

sprite.

char[][] getCharArray(int i); Return a copy of the picture with index number i.

void backup(); Make a backup copy of the current picture being used

by the sprite.

void restore(); Assign the backup copy to the current picture being

used by the sprite.

void appendPic(Sprite s); Append the picture (character array) in sprite s to the

end of this sprite's current picture, with a blank

column between them.

void trim(); Remove the starting and ending blank columns from

the sprite's current picture (character array).

char[][] getRegion(Rectangle Return a copy of the character array covered by the

Using JLEB Draft #1 (26th April 2017)

 31 © Andrew Davison 2017

rect); rectangle, or null.

void transform(String

methodNm);

Transform the current picture (character array).The

transformation names are: copy, invert, rotRight,

rotLeft, flipVert, flipHoriz, and trim.

boolean toPic(String nm); Change the current picture used by the sprite based on

its name.

boolean toPic(int i); Change the current picture used by the sprite based on

its index.

boolean nextPic(); Change to the next picture, if one exists.

Table 9. Picture Methods.

3.3. The SpriteStore Class

The sprite store maintains two maps of name-sprite pairs, a font map for character

sprites, and a sprites map for other sprites.

There are three public constants: BIG, MEDIUM, and SMALL, which refer to

different sized fonts.

The public methods are divided into four groups, listed in the following tables:

 Table 10. SpriteStore Creation.

 Table 11. SpriteStore Printing.

 Table 12. Sprite Retrieval.

 Table 13. Sprite Loading.

Method Purpose

SpriteStore(); Create a sprite store with the BIG font

loaded into the font map, and no sprites

in the sprites map.

SpriteStore(int fontType); Create a sprite store with the specified

font loaded into the font map, and no

sprites in the sprites map.

SpriteStore(String fnm); Create a sprite store with the font loaded

from the specified text file into the font

map. The format of the text file is

descibed in section 5.1. There are no

sprites in the sprites map

Table 10. SpriteStore Creation.

Method Purpose

void printNames(); Print the names of all the characters in the

font map, and all the sprites in the sprite

Using JLEB Draft #1 (26th April 2017)

 32 © Andrew Davison 2017

map.

void print(); Print the names and character arrays of

all the characters in the font map, and all

the sprites in the sprite map.

This will generate a lot of output.

Table 11. SpriteStore Printing.

Method Purpose

Sprite getSprite(String nm); Retrieve the named sprite from the sprites

map.

Sprite getSprite(char ch); Retrieve the named character sprite from

the font map.

Sprite buildMsg(String s); Create a new sprite by combining the

arrays for all the characters in the

supplied string. The combination ensures

that there's a blank column between each

character.

Sprite buildMsg(String[] spriteNms); Create a new sprite by combining the

pictures for all the sprites named in the

array. The combination ensures that

there's a blank column between each

sprite's picture.

Table 12. Sprite Retrieval.

Method Purpose

void loadSprites(String fnm); Load sprites from a file into the sprites

map. The file format is explained in

section 5.2.

void loadMultiSprite(String fnm); Load a single multi-picture sprite from a

file into the sprites map. The file format

is explained in section 5.2.

Table 13. Sprite Loading.

3.4. The Utils Class

The Utils class contains static methods for sprites and sounds. The utility methods for

character arrays are in ArrUtils.java (see section 3.5).

The public methods are divided into six groups, listed in the following tables:

 Table 14. Sprite Effects.

 Table 15. Multi-picture Sprite Effects.

 Table 16. Animation by Changing Position.

 Table 17. Generating Points in a Shape.

Using JLEB Draft #1 (26th April 2017)

 33 © Andrew Davison 2017

 Table 18. Sound Methods.

 Table 19. Assorted.

Method Purpose

static void flash(Screen scr, Sprite s, int

numTimes);

Make this sprite appear/disappear a

number of times.

static void flashInvert(Screen scr, Sprite

s, int numTimes);

Make this sprite flash by inverting its

picture a number of times.

static void showAll(Screen scr, Sprite[]

sprites, int numTimes);

Display each sprite in the array in turn,

repeating the specified number of times.

.Table 14. Sprite Effects.

Method Purpose

static void loop(Screen scr, Sprite s, int

numTimes);

Cycle through the sprite's pictures a

specified number of times

static void showSeq(Screen scr, Sprite s); Cycle through the sprite's pictures once.

static Sprite buildUp(Sprite s); Create a multi-picture sprite by

generating pictures from the character

array in the supplied sprite.

Each picture is a slice of the array by

increasing the number of rows in the slice

counting from the bottom of the array.

static Sprite buildRight(Sprite s); Create a multi-picture sprite by

generating pictures from the character

array in the supplied sprite.

Each picture is a slice of the array by

increasing the number of columns in the

slice counting from the left of the array.

.Table 15. Multi-picture Sprite Effects.

Method Purpose

static void scrollLeft(Screen scr, Sprite

s);

Move the sprite right to left, starting

beyond the right edge and finishing

beyond the left edge.

static void scrollUp(Screen scr, Sprite s); Move the sprite upwards, starting below

the bottom edge and finishing above the

top edge. The sprite is positioned in the

middle of the x-axis.

Using JLEB Draft #1 (26th April 2017)

 34 © Andrew Davison 2017

static void moveBetween(Screen scr,

Sprite s, int x0, int y0, int x1, int y1);

Generate a list of points in a line between

(x0,y0) and (x1,y1), which are used to

change the position of the sprite

incrementally.

Table 16. Animation by Changing Position.

Method Purpose

static ArrayList<Point> calcLine(int x0,

int y0, int x1, int y1);

Return a list of points making up a line

connecting (x0,y0) to (x1,y1).

Uses the Bresenham line algorithm.

static ArrayList<Point> calcRect(int x,

int y, int w, int h);

Return a list of points making up the four

sides of the rectangle whose top-left

corner is at (x, y), and has width w and

height h.

static ArrayList<Point> calcCircle(int x,

int y, int r);

Return a list of points making up the

circumference of the circle centered at (x,

y) with radius r.

Table 17. Generate Points in a Shape.

Method Purpose

static ArrayList<String> getSounds(); Return a list of the ".wav" filenames

stored in the sounds/ directory inside the

JLEB JAR.

static void play(final String nm); Play the named sound without waiting for

it to finish. The name can include a

".wav" extension or not, and the clip will

be loaded from the JLEB JAR.

static void play(final String nm, final int

numTimes);

Play the named sound the specified

number of times without waiting for it to

finish. The name can include a ".wav"

extension or not, and the clip will be

loaded from the JLEB JAR.

static void playWait(String nm); Play the named sound and wait for it to

finish. The name can include a ".wav"

extension or not, and the clip will be

loaded from the JLEB JAR.

static void playWait(String nm, int

numTimes);

Play the named sound the specified

number of times and wait for it to finish.

The name can include a ".wav" extension

or not, and the clip will be loaded from

Using JLEB Draft #1 (26th April 2017)

 35 © Andrew Davison 2017

the JLEB JAR.

Table 18. Sound Methods.

Method Purpose

static void delay(int ms); Delay execution for the specified number

of milliseconds.

static void waitEnter(); Delay execution until the use presses

<enter>.

Table 19. Assorted.

3.5. The ArrUtils Class

ArrUtils contains static methods for manipulating character arrays. Methods for

sprites and sounds are in Utils.java (see section 3.4 above).

The public methods are divided into seven groups, listed in the following tables:

 Table 20. Create Multiple Arrays from One Array.

 Table 21. Transform a Character Array.

 Table 22. Clear a Character Array.

 Table 23. Character Array Containment.

 Table 24. Extend a Character Array.

 Table 25. Reduce a Character Array.

 Table 26. Print a Character Array.

Method Purpose

static ArrayList<char [][]>

buildUp(char[][] charArr);

Create a list by generating multiple arrays

from the supplied character array.

Each new array is a slice of the input

array by increasing the number of rows in

the slice counting from the bottom of the

array.

static ArrayList<char [][]>

buildRight(char[][] charArr);

Create a list by generating multiple arrays

from the supplied character array.

Each new array is a slice of the input

array by increasing the number of

columns in the slice counting from the

left of the array.

Table 20. Create Multiple Arrays from One Array.

Using JLEB Draft #1 (26th April 2017)

 36 © Andrew Davison 2017

Method Purpose

static char[][] transform(String

methodNm, char[][] charArr);

The supplied character array is used to

generate a new array by calling the

function named in methodNm. The

function must be in this class. Currently

the functions are copy, flipHoriz,

flipVert, invert, rotLeft, rotRight, and

trim.

static ArrayList<String> getTransforms(); Return a list of the transformation

functions defined in this class. A

transformation function takes a character

array as input and returns a new array.

static void printTransforms(); Print a list of the transformation functions

defined in this class. A transformation

function takes a character array as input

and returns a new array.

static char[][] copy(char[][] charArr); Transformation function: copy the array

without change.

static char[][] rotRight(char[][] charArr); Transformation function: the new array

contains the input values rotated

clockwise by 90 degrees.

static char[][] rotLeft(char[][] charArr); Transformation function: the new array

contains the input values rotated counter-

clockwise by 90 degrees.

static char[][] flipVert(char[][] charArr); Transformation function: the new array

contains the input values flipped

vertically.

static char[][] flipHoriz(char[][] charArr); Transformation function: the new array

contains the input values flipped

horizontally.

static char[][] invert(char[][] charArr); Transformation function: the new array

contains the input values inverted so that

'on' is 'off', and vice versa. 'On' is coded

as '*', 'off' as ' '.

Table 21. Transform a Character Array.

Method Purpose

static void clear(char[][] charArr); Fill the array with spaces.

static void clear(char[][] charArr,

Rectangle r);

Fill the part of array that intersects with

the rectangle with spaces.

static void clear(char[][] charArr, int x,

int y, int w, int h);

Fill the array with spaces starting from

row x, column y, extending for w

Using JLEB Draft #1 (26th April 2017)

 37 © Andrew Davison 2017

columns and h rows.

Table 22. Clear a Character Array.

Method Purpose

static boolean inside(char[][] charArr,

Point p);

Is point p inside the character array?

static boolean inside(char[][] charArr, int

x, int y);

Is coordinate (x, y) inside the character

array?

Table 23. Character Array Containment.

Method Purpose

static boolean add(char[][] out, int x, int

y, char[][] charArr);

Add the character array to the out array

with its top-left corner located at (x, y).

Ignore the parts of the character array

which extend beyond the edges of the out

array.

static boolean append(char[][] out, int x,

char[][] charArr);

Add the character array to the out array

with its top-left corner located at (x,0).

Ignore the parts of the character array

which extend beyond the edges of the out

array.

Table 24. Extend a Character Array.

Method Purpose

static char[][] copyRegion(Rectangle rect,

Point pos, char[][] charArr);

Copy the contents of the char array

covered by the rectangle.

The rectangle's (x, y) is in screen

coordinates, and the top-left corner of the

array (i.e. charArr[0][0]) is assumed to

be located at position pos on the screen.

static char[][] trim(char[][] charArr); Copy the char array, removing the

starting and ending blank columns. This

is also a transformation function (see

Table 21).

static int getFirstTextCol(char[][]

charArr);

Return the index of the first column with

text.

static int getLastTextCol(char[][] Return the index of the last column with

Using JLEB Draft #1 (26th April 2017)

 38 © Andrew Davison 2017

charArr); text.

static boolean isBlankCol(char[][]

charArr, int col);

Is this column of the char array all

spaces?

Table 25. Reduce a Character Array.

Method Purpose

static void print(char[][] charArr); Print the array with a border around it,

preceded by its size.

Table 26. Print a Character Array.

4. Support Tools

Aside from the support classes described in the previous section, the JLEB JAR

contains three standalone tools for designing new sprites:

 ToChars.java

 ToHex.java

 DrawBoard.java, which utilizes DrawPanel.java

These tools can be executed most easily using their corresponding ".bat" files which

are located in the jlebTests/ folder.

It's also possible to test the Dream Cheeky LED message board without writing a

JLEB program by calling the HIDScreen.bat script.

4.1. ToChars.java

ToChars converts the image in the supplied file into a character array.

The user can optionally supply width and height arguments, and the image will be

scaled before being converted. The scaling always retains the original width/height

ratio of the image, so the scaled image may not exactly match the dimensions

supplied by the user.

The image is converted to black and white, and the character array is generated by

mapping each black pixel to '*', and each white pixel to ' '. The resulting array is

printed to standard output.

The mapping to black and white does not work well on images with alpha channels

(i.e. translucent parts), so any alpha parts should be converted to a solid color (e.g.

white) before ToChars.java is called on the image.

Usage examples:

 ToChars.bat p2_01.bmp

 ToChars.bat blueTele.png 20 20

Using JLEB Draft #1 (26th April 2017)

 39 © Andrew Davison 2017

4.2. ToHex.java

ToHex converts character arrays read from a file into hexadecimals suitable for

reading in as a font text file in the SpriteStore constructor. The hexadecimals encode

each array horizontally, where one hexadecimal corresponds to one row. Each

character array must have 7 rows, and at most 5 columns. This means that 7

hexadecimals are output for each array.

For example, ToHex.java is capable of translating the arrays in chars1.txt, which

begins like so:

$$ /

 *

 *

 *

*

// ---------------------------

$$.

 **

 **

// ----------------------------

$$ A

 **

* *

* *

* *

// ------------------------------

"$$" lines are used to assign a character name to the array that follows. This part of

chars1.txt defines three arrays for the letters "/", ".", and "A".

Calling:

ToHex.bat chars1.txt

produces:

/ 0x00 0x08 0x04 0x02 0x01 0x00 0x00

. 0x00 0x00 0x00 0x00 0x06 0x06 0x00

A 0x06 0x09 0x0F 0x09 0x09 0x00 0x00

This data can be used to construct a font text file, whose format is explained in the

section 5.1.

Using JLEB Draft #1 (26th April 2017)

 40 © Andrew Davison 2017

4.3. DrawBoard.java

DrawBoard.java and DrawPanel.java are a Swing application, which displays a 21 by

7 set of empty rectangles, as in Figure 19.

Figure 19. DrawBoard at Start-up.

The user can click on the rectangles to turn them 'on' (and again to turn them 'off').

When a suitable pattern has been created (as in Figure 20), the user can click on the

"Print" button, to print the pattern as characters.

Figure 20. DrawBoard with a Pattern.

 For instance, the output for Figure 20 would be:

-------- 21x7 -------

 **

* *

* *

* *

This data can be used to create a file suitable for ToHex.java (e.g. see chars1.txt), or a

sprite file that can be loaded by SpriteStore (the format for SpriteStore files are

described in the section 5.2).

Using JLEB Draft #1 (26th April 2017)

 41 © Andrew Davison 2017

4.4. The HIDScreen.bat Script

The HIDScreen.bat script calls JLEBs low-level HIDScreen class, which includes a

main() function for testing the functionality of the Dream Cheeky LED message board

without loading the rest of the JLEB API. If the script fails then there's a problem with

the message board and/or javahidapi (the Java API for HID communication).

If the board is working correctly, then HIDScreen will print a list of detected HID

devices, which should mention the message board. For example, the following is

printed on one of my test machines:

HID Devices:

0. HIDDeviceInfo

[path=\\?\hid#vid_046d&pid_c315#6&32f3a27f&0&0000#{4d1e55b2-f16f-

11cf-88cb-001111000030}, vendor_id=1133, product_id=49941,

serial_number=?, release_number=10240, manufacturer_string=Logitech,

product_string=Logitech USB Keyboard, usage_page=1, usage=6,

interface_number=-1]

1. HIDDeviceInfo

[path=\\?\hid#vid_1d34&pid_0013#6&3457654c&0&0000#{4d1e55b2-f16f-

11cf-88cb-001111000030}, vendor_id=7476, product_id=19,

serial_number=1, release_number=1, manufacturer_string=Dream Link,

product_string=USB LED Message Board v1.0, usage_page=65280, usage=1,

interface_number=-1]

Then the class attempts to open a link to the message board, and light up a few of its

LEDs. The output to the command window will be:

HID Library available

Opened HID device:

 Manufacturer: Dream Link

 Product: USB LED Message Board v1.0

 Serial Number: 1

Released HID device

Finished.

The board is kept running for a few seconds, so the user can check that it looks like

Figure 21.

Figure 21. HIDScreen's Board Output.

If the board is unavailable then the script will report:

Using JLEB Draft #1 (26th April 2017)

 42 © Andrew Davison 2017

HID Devices:

 Unable to list devices: java.lang.NullPointerException

HID Library available

Could not open HID device

This tells us that the HID library (i.e. javahidapi from

https://github.com/torbjornvatn/javahidapi) is installed but the Dream Cheeky

hardware cannot be found.

Another possible error message is:

Could not find HID library

This means that javahidapi has not been installed correctly; my code assumes it is in

D:\javahidapi.

5. File Formats Used by JLEB

SpriteStore is capable of loading four different text file formats: two font formats and

two sprite formats.

5.1. Two Font Encodings

A character sprite can be encoded either vertically or horizontally as hexadecimals. In

both cases the sprite is assumed to consist of 7 rows by 5 columns of '*' and ' '

characters.

The vertical encoding converts each column into a hexadecimal, producing five

hexadecimal digits. The encoding is explained in detail at

https://helpfactory.wordpress.com/tag/ascii/, and is used for JLEB's bigFont.txt font.

The horizontal encoding converts each row into a hexadecimal, producing seven

hexadecimal digits. The encoding is implemented by ToHex.java included with the

JLEB download, and is used for the mediumFont.txt and smallFont.txt fonts. I

'borrowed' the encoding from the dcled tool (http://www.last-

outpost.com/~malakai/dcled/).

5.2. Two Sprite Encodings

The two encodings represent sprites that consist of a single character array picture,

and sprites that contain multiple pictures.

sprites1.txt in the jlebTests/ folder is an example of how sprites with one picture are

stored in a text file. Each sprite consists of a name, width and height (for the array),

and the character array. For example:

downThumb 4 6

 *

Using JLEB Draft #1 (26th April 2017)

 43 © Andrew Davison 2017

 *

upArrow 5 7

 *

The "downThumb" sprite consists of 4 column and 6 rows, while "upArrow" is 5

columns by 7 rows.

Examples of multi-pictures sprites can be found in stickWalk.txt, line.txt, pattern.txt,

robot.txt, and arrows.txt in the jlebTests/ folder. Each file defines a single sprite,

which consists of multiple character arrays. For example, the start of stickWalk.txt is:

walker 5 7

w0

 *

* * *

 *

 * *

 * *

* *

w1

 *

 *

 * *

** *

 *

// more lines; not shown...

stickWalk.txt contains eight character arrays, which are labeled as w0 to w7. The first

line of the file gives the sprite's name and the dimensions of all the arrays (in this case

5 columns by 7 rows). Each character array is preceded by a name for the array,

which must start with a lower-case letter.

